297

NOTES

AMINOGLYCOSIDE ANTIBIOTICS. II.* CONFIGURATIONAL AND POSITIONAL ISOMERS OF BB-K8

Takayuki Naito, Susumu Nakagawa, Yoshio Abe, Soichiro Toda, Kei-ichi Fujisawa, Takeo Miyaki, Hideo Koshiyama, Hiroaki Ohkuma and Hiroshi Kawaguchi

Bristol-Banyu Research Institute, Ltd. Meguro, Tokyo, Japan (Received for publication February 28, 1973)

BB-K8 (1) is a new semisynthetic derivative of kanamycin acylated with L(-)-7-amino- α hydroxybutyric acid (L-HABA) at the C-1 amino group of the 2-deoxystreptamine moiety. The chemistry¹⁾ and antimicrobial activity^{1,2)} of BB-K8 have been reported. The present paper describes the two configurational isomers of BB-K8, which bear the DL- and D-HABA residue at the C-1 amino group of kanamycin A, as well as the three positional isomers of BB-K8, which are acylated with L-HABA at the C-3, C-6' and C-3'' amino groups of kanamycin A.

Configurational Isomers of BB-K8

DL-HABA was prepared by known methods either from γ -aminobutyric acid^{3,4} or from γ butyrolactone^{5,6}. The optical resolution of DL- α -hydroxy- γ -phthalimidobutyric acid, an in-

termediate in the latter method, by d-amphetamine was reported by SAITO et al.,⁶⁾ whereas we have successfully carried out the resolution with dehydroabiethylamine (DAA)⁷⁾ in ethanol to separate the less-soluble DAA salt of the Lisomer (C₃₂H₄₂N₂O₅·H₂O^{**}, mp 94~95°C, $[\alpha]_{D}^{24}$ +10.8° (c 2.5, MeOH), yield 86%) from the more-soluble DAA salt of the D-isomer $(C_{32}H_{42}N_2O_5 \cdot H_2O, mp \ 119 \sim 120^{\circ}C, \ [\alpha]_D^{27} + 26.8$ (c 2.5, MeOH), yield 62%). Each of the diastereomeric salts was treated with aqueous NaOH to generate the optically active γ phthalimido acids, which were hydrolyzed with HCl to L-HABA (C₄H₉NO₃, mp $218 \sim 219^{\circ}$ C, $[\alpha]_{D}^{25}$ - 30° (c 2.5, H₂O), yield 67%) and D-HABA (C₄H₉NO₈, mp 222 \sim 223°C, $[\alpha]_{\rm D}^{25}$ +28° (c 2.5, H_2O), yield 57%).

The selective N-acylation at the C-1 amino group of kanamycin A with DL-HABA and D-HABA was carried out by essentially the same method as reported previously¹) to give BB-K19 (2, C₂₂H₄₈N₅O₁₃·2H₂CO₃, mp 180~181°C (dec.), $[\alpha]_D^{21}+94.5^\circ$ (c 2.0, H₂O), TLC (S-110***) Rf 0.17) and BB-K31 (3, C₂₂H₄₈N₅O₁₃·2H₂CO₃·2H₂O, mp 179~180°C (dec.), $[\alpha]_D^{28}+106^\circ$ (c 1.25, H₂O), TLC (S-110) Rf 0.16), respectively (Fig. 1).

The minimal inhibitory concentration (MIC) of BB-K8 (1) and its configurational isomers, 2 and 3, were determined by a two-fold agar dilution method with the results shown in Table 1. Compounds 2 and 3 showed antibacterial spectra

* Part I of this series: BB-K8, a new semisynthetic aminoglycoside antibiotic.¹⁾

** Microanalysis agreed with the indicated when presented in this paper.

*** See foot note of Table 2.

THE JOURNAL OF ANTIBIOTICS

	C. L. I	÷		MIC	C (mcg/m	1)		
Test organism	Code #	Kanamycin	BB-K8	BB-K19	BB-K31	BB-K6	BB-K29	BB-K11
			(1)	(2)	(3)	(6)	(7)	(8)
Staphylococcus aureus Smith	Sa-2	0.4	0.2	0.8	1.6	12.5	25	25
,, ,, <u>209P</u> (R-4)	Sa-4	1.6	0.8	1.6	3.1	50	100	50
,, ,, A20239	Sa-10	100	0.8	1.6	6.3	>100	100	100
Escherichia coli NIHJ	Ec-1	0.8	0.4	1.6	1.6	25	50	25
,, ,, J uhl	Ec-3	1.6	0.8	1.6	3.1	50	50	50
,, ,, A20363 (ML-1630)	Ec-5	>100	0.8	1.6	3.1	>100	50	25
,, ,, A20365	Ec-7	100	0.2	0.4	0.4	>100	6.3	6.3
,, ,, K12	Ec-8	0.8	0.4	0.8	0.8	25	25	25
,, ,, NR79/W677	Ec-9	6.3	0.8	1.6	12.5	100	25	50
,, ,, JR35/C600	Ec-10	>100	0.2	0.8	0.8	>100	12.5	25
,, ,, W677	Ec-52	0.2	0.4	0.8	0.8	50	6.3	25
,, ,, JR66/W677	Ec-53	>100	0.4	1.6	6.3	>100	50	>100
Klebsiella pneumoniae D-11	Kp-1	0.2	0.1	0.2	0.4	12.5	6.3	12.5
,, ,, Type 22, #3038	Кр-8	>100	0.8	3.1	6.3	>100	50	>100
Pseudomonas aeruginosa D-15	Pa-1	12.5	0.8	3.1	3.1	>100	>100	>100
,, ,, A9930	Pa-3	12.5	0.2	0.4	1.6	100	25	50
,, ,, Н9	Pa-4	>100	6.3	12.5	12.5	>100	>100	>100
,, ,, A20718 (strain 130)	Pa-16	50	3.1		-	>100	>100	>100
Proteus vulgaris A9436	Pv-1	0.4	0.2	0.2	0.4	12.5	12.5	12.5
Proteus mirabilis A9554	Pm-1	0.8	0.8	1.6	1.6	25	50	50
Proteus morganii A9553	Pg-1	0.8	0.4	0.8	0.8	25	25	50
,, ,, A20031	Pg-2	0.8	0.8	1.6	3.1	25	50	50
Mycobacterium 607	M6-1	0.4	0.4	0.8	3.1	25	25	25
Mycobacterium phlei	Mp-1	0.4	0.2	0.4	1.6	25	6.3	12.5
Mycobacterium ranae	Mr-1	0.4	0.4	0.8	3.1	25	12.5	25

Table 1. Antibacterial spectra of HABA derivatives of kanamycin A

similar to that of 1 but with less intrinsic activity than 1. Compound 2 is approximately half as active as 1, while 3 with the D-configuration side chain is about one-fourth as active as 1. Some of the kanamycin-resistant organisms (e.g. Ec-9, Ec-53, Kp-8 and Sa-10 in Table 1) showed relatively greater resistance to compound 3, the MICs being $8 \sim 16$ times higher than those of 1.

Positional Isomers of BB-K8

Since there are four acylable amino groups in kanamycin A, two in the 2-deoxystreptamine (DOS) and one each in the 6-amino-6-deoxy-D-glucose (6-AG) and 3-amino-3-deoxy-D-glucose (3-AG) moieties, three other positional isomers of BB-K8 are possible. For convenience, the four

amino groups in the kanamycin molecule are designated as N^1 , N^2 , N^3 and N^4 in the order of reactivity to an acylating agent. It has been reported¹⁾ that BB-K8 is the N²-acylation product of kanamycin with L-HABA. The selective acylation at the other amino group, N^1 , N^3 or N^4 , with L-HABA was achieved on either the intact kanamycin A or the suitably N-protected kanamycin derivatives. Amino groups were protected by the carbobenzoxy (Cbz) group with use of N-(benzyloxycarbonyloxy)succinimide (4) and the acylation was carried out also by the activated ester method using the N-hydroxysuccinimide ester of N-Cbz-L-HABA (5). The N-protecting groups were finally removed by catalytic hydrogenolysis over palladium-on-charcoal. The synthetic

THE JOURNAL OF ANTIBIOTICS

[KM]

Compound	Code No	Site of	mp (°C)	fals in H ₂ O	TLC		Activity***	
Compound	0000 110.	acylation	mp (0)	[a]b m ngo	S-110*	S-116**	(u/mg)	
1	BB-K8	C-1 (N ²)	203~204°(dec.)	+99° (c 1.0, 23°C)	0.17	0.45	1,000	
6	BB-K6	$C-6'(N^1)$	184~187°(dec.)	$+109^{\circ} (c \ 1.0, \ 26^{\circ}C)$	0.29	0.60	33	
7	BB-K29	C-3(N ³)	$181 \sim 183^{\circ}(\text{dec.})$	$+83.5^{\circ}$ (c 1.0, 22°C)	0.24	0.55	15	
8	BB-K11	C-3"(N ⁴)	202°(dec.)	$+92^{\circ} (c \ 0.75, 29^{\circ}C)$	0.15	0.38	10	
Kanamycin A					0.43	0.78		

Table 2. Properties of L-HABA derivatives of kanamycin A

* silica gel plate, CHCl₈-MeOH-28% NH₄OH-H₂O (1:4:2:1)

** silica gel plate (developed ×2), upper layer of CHCl₃-MeOH-17% NH₄OH (2:1:1)

*** agar diffusion assay (B. subtilis PCI 219 plate, relative to BB-K8)

routes are schematically shown in Fig. 2.

BB-K6 (6, $C_{22}H_{43}N_5O_{13} \cdot 2H_2CO_3$), which is the acylation product at the most reactive amino function (N¹), was prepared by reacting intact kanamycin A with an equimolar amount of **5**. The actual location for N¹ has been determined to be the C-6' amino group in the 6-AG moiety by a method similar to that used by UMEZAWA *et al.*¹³⁾ Compound 6 was treated with NaNO₂ in aqueous acetic acid and then hydrolyzed in 4 N HCl. From the hydrolyzate, 6-AG was isolated and identified but neither 3-AG nor DOS was detected.

BB-K29 (7, $C_{22}H_{43}N_5N_{13} \cdot 2H_2CO_3$), which is the N³-acylation product, was prepared from **5** and the N¹, N²-di-Cbz-kanamycin (C₈₄H₄₃N₄O₁₅ $\cdot 3H_2O$, mp 182~186°C, TLC (S-114*) Rf 0.38), which was obtained by reacting kanamycin with 2 moles of **4**. The site of acylation in **7** was established to be the C-3 amino group in

* Silica gel plate, MeOAc-*n*-PrOH-28% NH₄OH (45:105:60).

the DOS moiety by the following experiments: SCHIFF's base of 7 with *p*-methoxybenzaldehyde (tetra-N-*p*-methoxybenzylidene BB-K29, $C_{54}H_{67}N_5O_{17}$, mp 155~157°C) was reduced by NaBH₄ to the tetra-N-*p*-methoxybenzyl derivative ($C_{54}H_{75}N_5O_{17}\cdot H_2O$, mp 161~165°C) which was then hydrolyzed with 6 N HCl to yield 1-N-*p*-methoxybenzyl-2-deoxystreptamine ($C_{14}H_{22}N_2O_4\cdot H_2O$, mp 75~78°C, TLC (S-114) Rf 0.45, ORD (H₂O): $[\alpha]_{220}^{trough}-390^{\circ}$, $[\alpha]_{265}^{peak}$ -330° , $[\alpha]_{222}^{trough}-1130^{\circ}$. CD(H₂O): $[\theta]_{273}$ -508, $[\theta]_{223}$ -3810), which was determined to be the enantiomer of that obtained from BB-K8 by the same sequence of reactions¹).

BB-K11 (8, $C_{22}H_{43}N_5O_{18} \cdot 2H_2CO_8$), which is the acylation product at the least reactive amino function (N^4), was prepared from 5 and the N^1 , N^2 , N^3 -tri-Cbz-kanamycin ($C_{42}H_{54}N_4O_{17}$, mp $258 \sim 263^{\circ}C(dec.)$, TLC (S-114) Rf 0.43), the latter compound being obtained from the same reaction mixture from which the above-described N^1 , N^2 -di-Cbz-kanamycin was isolated. The site of acylation in 8 was determined to be the C-3'' amino group in the 3-AG moiety, since the deamination of 8 and subsequent acid hydrolysis gave 3-AG but neither 6-AG nor DOS. The structures of the above compounds are shown in Fig. 3.

Some of the physico-chemical properties of compounds 6, 7 and 8 are shown in Table 2. Comparative periodate oxidation data on these compounds along with BB-K8 and kanamycin are shown in Table 3, and were consistent with the assigned structures.

In marked contrast to BB-K8, its positional isomers 6, 7 and 8 are all very weakly active, having about $1 \sim 3\%$ of the activity of BB-K8 when assayed on a Bacillus subtilis plate by the agar diffusion method (Table 2). The MICs of these compounds determined by serial agar dilution method are shown in Table 1. It may be worthwhile to note that, although compounds 7 and 8 are much less active than kanamycin against the sensitive organisms, they are considerably more active than kanamycin against the kanamycin-resistant organisms (e.g. Ec-5⁸⁾, Ec-7, Ec-10⁹⁾ in Table 1) which are known or presumed to inactivate kanamycin and neomycin by 3'-phosphorylation (neomycin phosphotransferase I¹¹). Another interesting finding is

ration of L-main of L-main any and an	Table 3.	Periodate	oxidation	of L-HABA	derivatives of	of kanam [,]	vcin
---	----------	-----------	-----------	-----------	----------------	-----------------------	------

Compound	Code No	Periodate consumed (mole)						
		1 hr	2 hr	5 hr	7 hr	24 hr	Theor.	
1	BB-K8	2.3	2.9	3.2	3.5	4.2	4	
6	BB-K6	4.1	4.1	4.1	4.2	4.4	4	
7	BB-K29	3.1	3.7	4.0	4.2	4.7	4	
8	BB-K11	1.1	1.6	1.9	2.1	2.5	2	
Kanamycin A		3.1	3.7	4.0	4.2	4.7	4	

that compound 7 is relatively more active than 8 against Ec-53 (*Escherichia coli* JR66/W677¹⁰) and Kp-8 (*Klebsiella pneumoniae* Type 22 $\#3038^{10}$) which are known to produce the neomycin phosphotransferase II¹¹). The general antibacterial pattern of compound **6** is similar to that of kanamycin though the intrinsic activity of **6** is much lower than the latter.

Enzymatic inactivation experiments were carried out on compounds 7 and 8 with an enzymatic solution obtained from E. coli JR66 /W677 according to the published method¹²⁾. Compound 7 was recovered intact from the enzymatic reaction mixture. However, the enzymatic reaction of compound 8 yielded the inactivated product (9) which was isolated by ion-exchange chromatography (Amberlite CG-50, NH_4^+ form) and characterized. Compound 9 analyzed as $C_{22}H_{43}N_5O_{13} \cdot HPO_3 \cdot H_2CO_3 \cdot H_2O$, gave positive HANES reaction and showed no UV absorption maximum. Treatment of 9 with alkaline phosphatase regenerated compound 8. Periodate oxidation experiment on 9 showed no consumption (0.11 mole) of the reagent, while 8 consumed 2.13 moles in a comparative test. Thus, compound 9 appeared to be 3'-phosphate of compound 8.

It is very likely from the comparative antibacterial spectra presented here and also from the inactivation experiments that L-HABA acylation at the C-1 or C-3 amino group of kanamycin (compound 1 or 7) has given rise to a resistance to both neomycin phosphotransferase I and II, and that acylation at C-3" with L-HABA (compound 8) might block the enzymatic action of neomycin phosphotransferase I but not of II. Acylation at the C-6' amino group (compound 6) seems to have no effect on the action of phosphorylative enzymes.

Acknowledgements

We are grateful to Prof. H. UMEZAWA, İnstitute of Microbial Chemistry, and Prof. J. DAVIES, University of Wisconsin, through whose courtesy the strains with known mechanisms of resistance were obtained. Thanks are also due to Dr. S. KONDO, Institute of Microbial Chemistry, for the supply of an authentic sample of 6-amino-6-deoxy-D-glucose.

References

 KAWAGUCHI, H.; T. NAITO, S. NAKAGAWA & K. FUJISAWA: BB-K8, a new semisynthetic aminoglycoside antibiotic. J. Antibiotics 25: 695~708, 1972

- PRICE, K.E.; D.R. CHISHOLM, M. MISIEK, F. LEITNER & Y.H. TSAI: Microbiological evaluation of BB-K8, a new semisynthetic aminoglycoside. J. Antibiotics 25: 709~731, 1972
- 3) (a) KUSCHINSKY, G.; G. LANGE, C. SCHOLTISSCK & F. TURBA: Reaction mechanism of digitalis constituents. Biochem. Z. 327: 314~330, 1955 (C.A. 50: 7163h, 1956)
 (b) FISCHER, E. & A. GODDERTZ: Synthese der γ-Amino-α-oxybuttersaüre und ihres Trimethylderivates. Ber. 43: 3272~3280, 1910
- TANABE, K.: A process for the preparation of γ-amino-α-hydroxybutyric acid hydrochloride. Japan Pat. '62~17962 (Nov. 13, 1962)
- 5) (a) PRICE, C.C. & J.M. JUDGE: γ-Crotonolactone. Org. Synth. 45: 22~24, 1965
 (b) OPPERMANN, A.C.J.: α-Hydroxybutyrolactone and a process for the production thereof. Brit. Pat. 688,253 (Mar. 4, 1953)
- SAITO, Y.; M. HASHIMOTO, H. SEKI & T. KAMIYA: Two new constituents from *Lentinus* edodes. Tetrahedron Letters 1970: 4863~4866
- GOTTSTEIN, W.J. & L.C. CHENEY: Dehydroabietylamine, a new resolving agent. J. Org. Chem. 30: 2072, 1965
- OKANISHI, M.; S. KONDO, R. UTAHARA & H. UMEZAWA: Phosphorylation and inactivation of aminoglycosidic antibiotics by *E. coli* carrying R factor. J. Antibiotics 21: 13~21, 1968
- 9) OZANNE, B.; R. BENVENISTE, D. TIPPER & J. DAVIES: Aminoglycoside antibiotics: Inactivation by phosphorylation in *Escherichia coli* carrying R factors. J. Bacteriol. 100: 1144~ 1146, 1969
- 10) BENVENISTE, R. & J. DAVIES: R-Factor mediated gentamicin resistance: A new enzyme which modifies aminoglycoside antibiotics. FEBS Letters 14: 293~296, 1971
- 11) BRZEZINSKA, M. & J. DAVIES: Aminoglycosidephosphorylating enzymes in neomycin and kanamycin resistant strains of *Escherichia coli* and *Pseudomonas aeruginosa*. Abstracts, 12th Interscience Conference on Antimicrobial Agents and Chemotherapy, p. 84, 1972
- 12) YAGISAWA, M.; H. NAGANAWA, S. KONDO, M. HAMADA, T. TAKEUCHI & H. UMEZAWA: Adenylyldideoxykanamycin B, a product of the inactivation of dideoxykanamycin B by *Escherichia coli* carrying R-factor. J. Antibiotics 24: 911~912, 1971
- 13) UMEZAWA, H.; M. OKANISHI, R. UTAHARA, K. MAEDA & S. KONDO: Isolation and structure of kanamycin inactivated by a cellfree system of kanamycin-resistant *E. coli*. J. Antibiotics 20: 136~141, 1967